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The axisymmetric flow of an incompressible fluid through a pipe (of radius a )  suffering 
a severe constriction is studied for large Reynolds numbers R, the features of sym- 
metric channel flows being virtually the same. Here ‘severe’ refers to a constriction 
whose typical dimensions are finite, and the oncoming velocity profile is taken to be of 
a realistic type, i.e. with no slip a t  the wall. The study adopts (Kirchhoff) free-stream- 
line theory, which, for the mostly inviscid description, affords a rational basis consistent 
with viscous separation. The major (triple-deck) separation takes place on the con- 
striction surface and is followed by a downstream eddy of length O(uR). Another, less 
familiar, separation is predicted to  occur a t  a distance 0.087a In R + O(a) ahead of the 
finite obstacle. Free-streamline solutions are found in the two main extremes of 
moderately severe and very severe constriction. I n  both extremes, and in any slowly 
varying constriction, the major separation is sited near the maximum constriction 
point. The upstream separation point is also derived, to O(a) accuracy in each case. 
The upstream separation can be suppressed, however, if the constriction has no 
definite starting point and decays slowly upstream, but then the upstream flow response 
extends over a much increased distance. Comparisons with Navier-Stokes solutions 
and with experiments tend to favour the predictions of the free-streamline theory. 

1. Introduction 
I n  the study of the incompressible fluid motion produced when a high Reynolds 

number (R) tube flow is symmetrically constricted, i t  is convenient to focus attention 
on constrictions of axial length comparable to the tube width or radius a. Except 
in extreme cases, constrictions with other axial scales provoke basically the same flow 
features as those with scale O(a).  Also, for practical applications, it is preferable to 
deal with incoming flows (e.g. (1.2) below) which satisfy the no-slip condition a t  the 
tube wall. We may then classify these O(a) long constrictions into three basic categories, 
‘fine’, ‘moderate’ and ‘ severe’, depending on the characteristic slope a of the obstacle. 
For fine constrictions (Smith 1976u, b ) ,  defined by 01 = O(R-f), there occurs virtually 
no nonlinear upstream influence. A viscous nonlinear wall-layer motion is provoked 
adjacent to the constriction but it develops only from the start of the obstacle, not 
upstream, and the core motion outside the wall layer is of the inviscid elliptic, but 
linear, kind. Hence there is no possibility of significant nonlinear effects, such as 
viscous separation, ahead of the constriction. Instead any nonlinear upstream response 
remains suppressed, as the obstacle height is increased, until a becomes O(R-Q), which 
order of magnitude defines a moderate constriction. I n  a moderate constriction 
(Smith 1 9 7 7 ~ )  the inviscid core motion is induced by the presence of the constriction 
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itself, rather than by the viscous wall layer near it. The pressure disturbance then 
feeds back, through the core, to interact nonlinearly with the wall layer upstream of 
the obstacle. Separation can occur, in a regular fashion, within the upstream wall 
layer. Further, as the obstacle height is increased on the moderate scale, the separ a t' ion 
point is forced increasingly upstream, without bound. 

The final stage in the classification process occurs when the constriction becomes 
severe, a = O(1). That is perhaps the most physically realistic case of all and is our 
interest in this work. Just  as the moderate-constriction theory was found to be the 
natural development from fine-constriction theory, in the sense that these two flow 
structures become identical as aRB + 0 and aR* --f co respectively, so we find below 
that the upper limiting form of moderate-constriction theory (aR)+ co) indicates the 
basis for the severe-constriction flow structure studied here. The latter is set out in 
$ 2 below. It is founded on classical free-streamline theory (Kirchhoff 1869)) according 
to which no finite adverse pressure gradients can be suffered on solid surfaces (i.e. 
separation is smooth) and the pressure is uniform on free streamlines. The reasoning 
behind this approach is that free-streamline theory is believed to yield the proper 
inviscid limiting form of the Navier-Stokes equations, especially with regard to the 
viscous incompressible separation from the constriction surface. The viscous separa- 
tion, which occurs in the neighbourhood of the junction between the solid surface and 
the downstream free streamline, is governed by triple-deck theory (Sychev 1972; 
Stewartson 1974; Smith 39773), and part of the beauty of the triple-deck description 
is that i t  confirms the relevance of inviscid free-streamline studies. 

I n  the present internal flow situation free-streamline theory leads in general to a 
problem involving nonlinear boundary conditions of mixed (free-surface and body- 
surface) type. The problem seems more difficult than corresponding external flow 
situations (e.g. Woods 1955), since a free streamline is necessary (i.e. separation occurs) 
far ahead of, as well as beyond, the constriction. However, on the one hand, lineariza- 
tion is valid if the constriction is moderately severe, and for realistic basic flows like 
(1.2) below, this approach produces a tractable problem ($3).  For, unlike in external 
flows, the pressure on a free streamline then obeys a simple local relation with the 
streamline displacement. Fortunately too, a t  the other extreme ( $  4) where the tube 
is very severely constricted, so that there is only a small minimum tube width, some 
analytical progress is possible. I n  both moderate and very severe cases, and also in 
the slowly varying constrictions studied in $ 5, the separation point on the obstacle is 
sited near the point of maximum constriction, a property reminiscent of the experi- 
mental observations of Fottinger (1939) and Young & Tsai (1973) (see, for example, 
Batchelor 1967, plate 6)  and the calculations of Lee & Fung (1970) and Deshpande, 
Giddens & Mabon (1976). I n  the general case of a severe constriction ($ 2) a number 
of other features may be considered, including the upstream viscous separation and 
the ensuing slowly moving eddy, the viscous separation on the obstacle, the down- 
stream eddy (of length O(aR)) and the drag on the constriction. I n  particular it is 
predicted that separation occurs asymptotically far upstream, a t  a distance 

z$&, = - @Pc'lnR+ ( 0 ~ 5 6 6 - 1 ~ 7 T , ) / 3 ~ ' ~ + 0 ( ~ )  (1 .1)  

ahead of the constriction. Here PI = 3.83, i f ,  is a constant to  be calculated from 
free-streamline theory (see, for example, $8 3 and 5) and R is defined precisely below. 
The result ( 1 . 1 )  holds for axisymmetric pipe flow, upon which we concentrate mainly 
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hereafter. Symmetric channel flows have essentially the same characteristics. Asym- 
metric channels and pipes provoke very different features, however (Smith 1976b, c, 
1977c), as do dilatations (Smith 1976a, b ) .  

The result (1.1) does not hold, however, if the constriction has no definite starting 
point and decays slowly (e.g. algebraically) upstream. Then the upstream separation 
does not occur, but a very long scale upstream adjustment is provoked ( 3  6). 

Comparisons with experiments and with Navier-Stokes solutions, presented in the 
appendix, encourage the belief in the relevance of free-streamline theory a t  high 
Reynolds numbers. 

The Reynolds number is defined by R = U, a / v  ( 3  I ) ,  where U ,  is twice the maxi- 
mum velocity of the flow far upstream of the constriction, the t,ube being straight apart 
from the constriction. The fluid is incompressible with kinematic viscosity v and 
density p and its motion is assumed to remain laminar, steady and symmetric through- 
out. As incoming profile, sufficiently far upstream, for convenience we take Poiseuille 
flow 

u = Uo(r) = &(l -rz ) ,  $ = Y o ( r )  = -g(l-r2)2, w = 0, ap/ax = -2/R,  (1.2) 

although the theory applies to more general (e.g. undeveloped) forms. Here u, v, $, p ,  x 
andr denote the axial and radial velocities, stream function (u = a$/r  ar, v = - a$/. ax), 
pressure and axial and radial co-ordinates, non-dimensionalized with respect to Ua, 
U,, a2U,, p U 5 ,  a and a in turn. The (smooth) constriction is prescribed by 

r = l -F(x) ,  (1.3) 

where F ( x )  is zero upstream of the constriction and has a maximum F,,,( < 1 )  a t  
x = xmax, say. 

The study here has clear relevance to many engineering problems (e.g. oil pipelines 
or machinery dynamics), to physiological flows, to wall interference in wind-tunnel 
testing (see, for example, Grove et al. 1964) and, possibly, to the performance of certain 
musical instruments. Work has been done on similar themes (e.g. Sobey 1976; Fraenkel 
1961; Yih 1959, 1960) although often (for various reasons) by use of physical models 
and/or integral methods that perhaps tend to obscure some of the important flow 
details, and with unrealistic incoming profiles. 

2. Symmetric constrictions of finite length (or semi-infinite) 
The approach we adopt here for the flow through a severe constriction is based on 

an extension of Kirchhoff’s (1869) free-streamline theory (with smooth separation), 
which has been shown (Sychev 1972; Smith 1977b) to provide a rational basis for the 
description of high Reynolds number flow past bluff bodies in external flows. Thus 
we are led to seek a solution of the inviscid equations of motion in which on any solid 
surfaces only favourable finite pressure gradients are permitted (to avoid a catastrophe 
a t  separation; Stewartson 1970a, 1974; Goldstein 1948), while on any free streamlines 
the pressure is to  be uniform (so that no sizable reversed flow is generated between the 
tube wall and the shear layer surrounding the free streamline). Clearly, for a finite 
body, these demands require breakaway (and, consequently, boundary-layer separa- 
tion) of the motion before it reaches the rear of the body. Otherwise, an adverse 
pressure gradient is provoked as the fluid slows down near the rear. But, less familiarly, 
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breakaway and separation must occur upstream as well, to avoid the adverse pressure 
gradient that would otherwise arise during the deceleration a t  the wall near the front 
of the constriction. Further, the position of this upstream separation point may be 
shown to be asymptotically far upstream when R % 1 (see below), so that the inviscid 
solution holding at finite distances from the constriction begins with a separation 
streamline upstream. We return to discuss the upstream separation below. For the 
motion in the core, where x and r are O( 1)  (apart from in the zones of reversed motion 
and in the thin viscous layers), we have 

(+, u , p )  = ($0 ,  uO, PO) +R-”($17 u l lpl)  f o(R-M)> (2.1) 

where the index M ( > 0) is referred to below. Hence $,, u, and p ,  satisfy the inviscid 
equations of motion, which yield, on integration and use of the starting condition (1.2), 
the vorticity equation D2+, = -r2,  

where D2 = (a2/ar2 - r-1 a/ar + $ / a x 2 ) .  The boundary conditions on the inviscid 
solution are $, = 0 on the body or free streamlines, ( 2 . 3 ~ )  

po  uniform on free streamlines, (2.3b) 

$, = -Q a t  r = 0 (for symmetry), ( 2 . 3 ~ )  

$,( -a, r )  = Y o ( r )  [from (1.2)] (2 .3d )  

(see also (2.10) below). In  fact (2.3b) may be made more specific for the upstream and 
downstream portions of the free streamline (figure I). The arbitrary upstream pressure 
constant may be chosen to be zero, so, since Bernoulli’s equation holds, 

p ,  = 0 (u, = 0) on the free streamline C,,Cl, ( 2 . 4 ~ )  

p ,  = poo [u, = ( -  2poo)*] on the free streamline C,C3. (2.4b) 

Here the constant poo is negative because the pressure falls along the constriction 
C,C, (and an attached boundary layer of thickness O(R-&) is produced along C, C,). 
The pressurep, and its gradient ap,/ax are required to be continuous at C, (for smooth 
separation), which condition fixes the solution for $,. 

The breakaway point C, (where x = x ,  + R-Mx,, + o ( R - M ) )  and the reattachment 
point C, ( x  = x1 + O(R-‘)) upstream of it have to be determined, as do the shapes of 
the free streamlines C,C1 (where 1 - r  = F l ( x ) + O ( R - M ) )  and C,C3 (where 

1 - r = F,(x) + R-MF21(x) + o( R - M ) ) .  

However, we may verify that the first separation point C, is asymptotically far 
upstream, as follows. For x-+ - 00 the solution of (2.2) must take the form 

where n, is an unknown constant (see, for example, 5 3 below) and /3, is the nth positive 
zero of the first-order Bessel function J,. Since, on physical grounds, the fluid must 
accelerate along the centre-line in anticipation of the coming constriction, we may 
assume that rl > 0. Then the velocity is 

( 2 . 6 ~ )  
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( b  ) 

FIGURE 1. (a) The severely constricted tube flow field and definitions. The main, free-streamline 
motion is shown by solid lines, the slower eddying niotions by dotted lines. ( b )  Sketch (not to 
scale) of the wall pressure variation through the tube. 

for x+ - co (here Jo is the zeroth-order Bessel function). If the flow were attached to 
the wall here then the slip velocity driving the viscous wall layer would be given by 
the value of ( 2 . 6 ~ )  at r = 1 ,  which is negative. Not surprisingly, the corresponding 
Falkner-Skan problem in the wall layer has no solut?ion. The resolution of this con- 
tradiction is that the flow has already separated and there exists a free streamline 
(a line of discontinuity) at 1 - r = F,(x) (in x < x,) with the property 

F'(x) - nlexp(/3,x) for x - t - c o ,  (2.6b) 

to conform with the uniform-pressure requirement ( 2 . 4 ~ ) .  This result matches with 
the results for moderate constrictions (Smith 1977 a )  and demonstrates the invalidity 
of continuous inviscid theory (Sobey 1976; Fraenkel 1961; Yih 1959, 1960) for realistic 
incoming profiles like (1 .2 ) .  

The viscous separation far upstream, near C,, occurs in a viscous wall zone, whose 
thickness is O(R-*) for the balance of inertial and viscous forces. The basic flow (1 .2)  
has velocity O(R-3) in such a layer, so it is perturbed nonlinearly when the slip velocity 
(at r = 1 - )  induced by ( 2 . 6 ~ )  also becomes O(R-*). This takes place when exp (Blx) 
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[in (2.6u)l is O(R-*). We set x = -+P-llnR+Z, therefore, where 5 is O( l ) ,  so that x 
is large and negative. Then the flow structure for 5 = O( 1)  is mainly an inviscid core 
(i) wherein = Y , ( r )  + R-*Fl(Z, r )  + . . . , and 

( 2 . 6 ~ )  

The other eigensolutions for 3, (which satisfies D2F1 = 0) are proportional to exp (P,, 5) 
with n 2 2 and consequently are inadmissible because they grow too fast to match 
with (2.5) when i?-++co [and x+-m in (2.5)]. [If m1 were zero then the exp ( P 2 Z )  
term would be appropriate; the basic properties of the upstream separation are un- 
altered in this special case, however.] A wall zone (ii) reduces the O(R-*) slip velocity 
associated with ( 2 . 6 ~ )  to zero. I n  (ii), u = R-*O(Z,Z) and 311 = - R-*'F(Z,Z), where 
r = 1 - R-*Z and Z is O( l), and 0 and satisfy the boundary-layer equations 

( 2 . 7 ~ )  
- a'F -a0 aTa0 dF a=U u = -  .y +- 

az7 a2 a5 az as azz- 
Here Y(Z) = R3p and is one of the unknowns in (ii). The boundary conditions on 0 

and 'F are i 7 = ' F = 0  at Z = O ,  (2.7b) 

B + Z ,  T-+&Z2, H - + o  as ~ + - c o ,  ( 2 . 7 ~ )  

B - Z-nlexp(PIZ) as Z+co. (2.7d) 

The constraints (2.7 b-d) ensure, respectively, the no-slip condition, the match with 
the Poiseuille flow (1.2) upstream and the join to the core (i) [since the slip velocity 
from ( 2 . 6 ~ )  is -mlR-fexp(PIZ)]. The solution of (2.7u-d) has been calculated by 
Smith ( 1 9 7 7 ~ ) .  The wall zone separates a t  a finite value ZSep of Z, given by 

- 
zSep = 0.566,8~1-1n(?i1)/,81 (?il = Ptm,) .  

Thereafter the fluid in the wall zone starts to concentrate in a shear layer centred 
around the curve 

2 = n1 exp (P1 Z). ( 2 . 8 ~ )  

AS Z + + co the solution generates the following self-similar structure. First, sur- 
rounding the curve ( 2 . 8 ~ )  there is the shear layer of thickness O(&) in which 

B = &JG;((), 'F = ZfG,((), (2.8b) 

where5 = [Z--n,exp(~,Z)]Z-*,andG,(~)hasthepropertyG,( -00)  = -Co( = - 1.2521; 
see Stewartson & Williams 1973). Second, there is a viscous sublayer near the wall, of 
thickness O(Z* exp ( -PIZ)).  Between the two layers a slow, reversed, uniform stream- 
ing preserves the mass entrainment required by (2.8b). Hence, as the flow emerges 
downstream (3  + + co) from the separation zone (ii), the dividing streamline takes up 
the position r N 1 -ml R-*exp(P,Z), from ( 2 . 8 ~ ) .  This position continues directly 
into (2.6b) (where x -+ - 00). Also, an overall pressure rise Rfp(co), where p(00) = 0.95, 
is produced through the separation zone (ii). Finally, the upstream separation point 
is predicted to be at x = xSep, where 

(2.9) 

The value of W,, which depends on the whole motion for 2 = O( l) ,  is therefore one of 
the principal unknowns (see, for example, (3.19) and (5.10) below). 

zsep = - &3;l In R + (0.566 - In El) ,&l+ o( 1) .  
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'0 

FIGURE 2. Diagram of the upstreeni eddy and shear layer (SL1). 

If  the constriction shape [see (1.3)] has F(x )  = 0 for x < 0, say, then a numerical 
solution of the basic problem (2.2)-(2.4) (with (2.10) below) would seem necessary 
when F is generally O( 1) (see however Q 5).  The conformal mapping methods applicable 
in a limited number of exterior flow problems (e.g. Milne-Thompson 1968; Batchelor 
1967) do not usudly yield a viable calculation technique here. Before considering 
(in @3-5) certain limiting solntions of the basic problem, however, we may anticipate 
some other important features of the overall motion. 

First, near ,I- = x,, p ,  -poo cc (2, - z) j  as x+ x, - (while p ,  = p,, for 2 > x2) and 
F&,) - F,(x) at (.r - x,)' + O(x - x2)g as x + x 2  + , since in the neighbourhood of x = x2, 
(2.2) gives potential flow to first order. This necessary (smooth separation) property 
of the free-streamline theory is in line with the triple-decli description of incom- 
pressible separation Smith (1977b), occurring at R' = R', + O(R-#), provided that 
ill=& (Sychev 1972) in (2.1) and p,-p,,cc (x,-x)+ as x + x z - ,  while F,,K ( x - x , ) ~  
for x --f x, + . Here plo is the uniform ralue of p 1  on the free streamline C, C, and the 
d u e s  of the constants of proportionality in p ,  -plo and FZ1 above are given numeric- 
ally by Smith (1977b). 

Next we consider briefly the eddying motion between C,C, and the wall, and the 
reattachment at C,, sketched in figure 2. Both are necessary to maintain the mass 
flux required by the thin shear layer (SL1) aronnd C,C,. The structure of eddies and 
reattachment in general is by no means clear yet (Burggrnf 1970, 1976; Messiter, 
Houph S- Feo 1973: Jenson, Burggraf R- Rizzetta 1971), howe\-er, and only the 
following, essentially qualitatire (or order-of-magnitude), remarks are appropriate. 
The solution in SL1 starts as the continuation of (2.8b), so that the typical velocities 
in SL 1 are 0(6  = (R-l In I?)+) when s is finite, and a mass flux O ( P )  (entrained by 
SL1) needs to be reversed, ahead of C,, to preserve continuity. A pressure rariation 
of order 6' is reqiiired for this purpose, from Bernoulli's law. In some related problems 
Burggraf (197~4,  Jenson ef al. (1974), Smith 8: Duck (1977) and Professor K. Stewartson 
( 1977, private conininnication) have proposed that reattachment exhibits locally a 
sharp pressure rise (O(6,) here) and source-like behariour which sustain an entraining 
motion in the eddy. Conversely, the approach of Burggraf (1970) and Messiter et al. 
(1973), while suggesting the sharp 0(S2) pressure rise close to reattachment, in order to 
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turn back the negative mass flux remaining in SL1 at x = x1 - , results in a backward 
wall jet [with velocity 0(6) ]  emerging from the neighbourhood of C,. Further away 
from C,, on the length scale x = 0 ( 1 ) ,  the effects of the backward jet and the shear 
layer SL1 then combine to produce an essentially inviscid eddy, of closed streamlines, 
in which the velocity and pressures are again 0 ( 6 )  and O(S2) in turn. This eddy, which 
rotates clockwise, is of the Prandtl-Batchelor type (Batchelor 1956), with constant 
vorticity. But since it lies between C, C, and the wall, and COG', is fixed from (2.2)-(2.4), 
there is no interaction between the eddy pressure [0(6,)] and its shape, unlike in the 
Messiter et al. (1973) model. We tend to favour the Burggraf (1970) and Messiter et al. 
(1973) approach, despite the difference mentioned above, but note that there is a 
distinct possibility that, following the interaction (along C, C,) between the eddy slip 
velocity and the shear-layer velocity, the SL1 profile entering the reattachment zone 
around C, contains no negative mass flux. In that case the reattachment process near 
C, is a relatively passive process, involving no sharp pressure rise. In either event, 
however, a secondary separation seems inevitable as the fluid in the wall layer de- 
celerates on approaching the discontinuity a t  the onset of constriction (x+ 0 + ). 

Another property is the relation between the drag C, (or axial force) acting on the 
constriction and the ultimate form of the inviscid solution far downstream as x+ + 00. 

The only ultimate form consistent with (2.2), (2 .3a,  c) and (2 .4b)  seems to be a jet-like 
inviscid motion, bounded by lines of constant radius ( r  = c; figure 1). Thus 

P = Po,, 
for x++oo .  (2.10) I Fz(x)-+ 1 -c, 

u04- ?p+f(c2+c-2), 

$-,+-~[l+r4-(c2+c-Z)r2] 

The constants c (0 < c < 1) andp,, here are related by the condition 

-Po, = ~ ( c - 4  - 2 + c4), 

from Bernoulli's theorem. In addition, however, an integral momentum balance 
(taking into account the uniform surface pressures p ,  = 0 and p ,  = poo upstream of 
C, and downstream of C, respectively) yields the formula 

CD = (n/96c4) (1 (3 + 3c2 + 2 ~ ~ ) .  (2.11) 

Hence C, is O( 1)  and positive, provided c < 1 ,  i.e. if separation takes place. Figure 3 
details the dependence of the drag C, and free-streamline pressure p,, on the final 
jet radius c.  Both C, and -poo increase (from zero) relatively slowly as c falls from 
unity to about 0.4, but they rise rapidly as c decreases further. 

Lastly, far downstream the flow must reattach to provide the small mass flux which 
is entrained by the O(R-4) shear layer surrounding C2C,. The reattachment occurs at  a 
distance O(R)  beyond the constriction. (See, for example, Deshpande et al. 1976, 
figures 5a, b ;  Lee & Fung 1970). This is because the shear-layer solution is, for x B 1, 
tl. - R-)xkF(q)(whereSisasimilarityfunction(e.g.Lock 1951)andq = (r-c) Rtx-)), 
so that when x is O(R)  the shear layer becomes of thickness O ( l ) ,  comparable with the 
pipe width. At that stage the part of the fluid moving with velocity O( 1)  must expand 
to fill the tube, inducing reattachment. This reattachment process and some others 
(e.g. Hung & Macagno 1966; Macagno & Hung 1967; Lee & Fung 1970) are currently 
being studied. In  particular, it  is likely that the slower reversed motion between 
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FIGURE 3. Graphs of C D  andp,, against c [see (2.10) and (2.11)]. 
c 

C,C3 and the wall contains not one but two secondary eddies, both of axial length 
O(R)  and radial extent O(1). This occurrence is like that within the upstream eddy, 
and is due essentially to an adverse pressure gradient which is induced as the reversed 
flow decelerates on approaching from far downstream. 

The description of all the eddies, separations, reattachments and other details 
depends on the solution of the central problem (2.2)-(2.4) [with (2,10)], which is 
attempted in ss3-5 below for moderately severe, very severe and slowly varying 
severe constrictions respectively. 

3. Moderately severe constrictions 
We may progress analytically if we make the assumption IF1 < 1 now, so that the 

wall is only slightly perturbed (but still on the severe scale). Let us suppose that 
P = hP(z) ,  where 131 is O(1) but h << 1. Then formally the solution of (2.2) may be 
linearized about the initial profile (1.2) in the form 

$o = Yo(r) + h2$ol + h3@-,, + . . . , 
(3.1) 

(3.2) 

The fact that the O(h) wall disturbance provokes only O(hz) flow perturbations of (1.2) 
is due entirely to the no-slip property of the basic motion (1.2). The boundary con- 
ditions on 1crol, $02, etc. are obtained by expanding 

i u0 = Vo(r) + h2UOl + h3u0, + . . . , 
P O  = h2p01 + h3p02 + . . . , 

where, from (2.2), D2$,, = 0 = D2$,, = ... . 

4 = hfZO(4 + hYZl(4 + h3f,,(4 + 0(h4) ,  4 = hflO(4 + hYll(4 + W l Z ( 4  + W4) 
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for the constraints (2.3) and using the definjtions 

u ( x )  = hfio + h2[uO1(x, 1)  +ti1 - $401 
+ h3[uo2@, 1)  + f i 2  -fiofil -fro auol(x, 1)larI + W4) (3.3) 

for the slip velocity U ( x )  along the free streamlines CoC, (on which i = 1) and C2C, 
(i = 2), respectively. Since U ( x )  must be zero on COG',, we have (from (3.3) with i = 1) 

flO(4 = 0, fll(4 = -uo,(x, 11, f i 2 ( 4  = -uo&, 1)  (3.4a) 

(and uol(x, 1 )  is negative in x < 0 for any constriction B;  see ( 3 . 1 7 ~ ~ )  below). The 
conditions ( 3 . 5 ~ )  and (3.6a) below then follow. Hence the upstream free streamline 
is much closer [distance O(h2)] to the wall than is the downstream one [distance O(h),  
from (3.4b) below). Also the result (assumed in (3.5a) below) that x1 Q 1 stems from 
( 3 . 4 ~ )  (see more precise evaluation of x1 below). Again, (2.4) and (3.3) imply thatf,,(x) 
is uniform, that x2 = xrna,.[ +0(1)]  (see (3.11) below) and hence that 

f 2 0 ( 5 )  F(xrnax), fii(x) = uol(xrnax + 9 l ) -uoi (~ ,  1 )  (3.4b) 

(see note below on the effect off2,(x) on the shear-layer shape C,C3), where the result 
for f 2 , ( x )  holds for z > x2 and x2 is determined in (3.13) below. From (3.4a, b )  and 
Taylor series expansions in (2.3) the boundary conditions on $ol and $02 become 

0 for x < 0, ( 3 . 5 4  

$ol(x, 1 - ) = gP2 on the constriction, for 0 < x < xmax, (3.5b) 

4 f& on the downstream free streamline, for x > xrnax, ( 3 . 5 ~ )  

0 for x c xl, ( 3 . 6 ~ )  

(3.6b) - 4F3 +Fu,,(x, 1) on the constriction, 
( 3 . 6 ~ )  

Before giving the global solution for $ol (in (3.13)-(3.17) below) we may deduce 
a number of the linearized flow properties. First, the precise value of x1 when h is 
small depends strongly on the particular shape of the constriction, for the criterion 
for determining x1 is that U(x ,  + ) = 0, where 

i 
$02(x, 1 - ) = i - t f 2 o ( f L -  2f2J +fiOUOl(", 1)  for x > x2. 

U ( X )  = hP(z) + h2[ - +F2(x)  + ~ 0 1 ( ~ ,  I)] 

+ h3[ - ~ ( x )  auo,(x, i ) p  + uO2(2, 111 + o(h4) (3.7) 

gives the slip velocity on the body, x1 < x < x2. Therefore we need the behaviour of 
uol in particular as x += 0 + [since x1 Q 1 from (3.4a)3. This comes from a Iocal examina- 
tion of )cI.ol near x = 0. If, say, the constriction is wedge-like at  its start, so that 
F ( x )  = K O  x + K ,  x2 + O(x3) for x+ 0 + , where KO and K ,  are constants with KO > 0, 
andF(x) = 0 for x < 0, then (3.2) and (3.5a, b) yield the property 

KE P$ 
2n 

$ol N d, 9, sin 8 - - [ (8 - T )  cos 28 + (In 9,) sin 281 + d, ?2, sin2 8 (3.8) 

for P, 4 1, where P2, = x2 + ( 1  - T ) ~ ,  0 < 8 = tan-, (Pl /x)  < T ,  and d, andd,are constants. 
Therefore uo,(O, 1 )  is finite (and negative, from ( 3 . 1 7 ~ ~ )  below) but 

uol(x, 1) -uo,(O, 1)  - (Ki ln)  1x1 In 1x1 as x+ 0 . 
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With (3.7) this suggests the expansion 

x1 = hxll) + h21n hxi2) + O(h21n ( -In h) )  (3.9 a) 

for zl. Substituting into the constraint U(xl) = 0 and using Taylor series, we find 

zp' = -Uo1(0,  l ) / K o ,  x y  = UOl(0,  1)/7r. (3.9 b) 

(A referee has kindly pointed out that the value for x( i )  in (3.9b) follows more directly 
as the intersection of the free streamline (3.4a) with the constriction surface. The 
same applies to the first term in (3.10) below.) By contrast, if the constriction is bluff 
near its start, with F - K 0 x N  for 0 < x < 1, where KO > 0 and 4 < N < 1, then an 
analysis similar to (3.8)-(3.9) yields the expansion 

x1 = -h~"Uo1(0, 1)/Ko-h2K;-N(-Uo1(O, l))Ncot(2Nn)+ ... . (3.10) 

[If N = 4, log terms again appear in the expansion of $ol but (unlike in (3.10)) the 
linearization of (3.1) then becomes invalid (or indeed if N c 4) around the reattach- 
ment point.] Hence, as N decreases, the reattachment point moves further upstream, 
towards the onset of constriction, because the increased bluffness of the constriction 
promotes more rapidly the acceleration necessary to maintain a forward-moving wall 
layer beyond reattachment. 

Second, the separation point x2 is less dependent on the constriction shape when 
h < 1 ; in general it is described by 

x2 = x,,, + h In hxilf + O(h In ( - In h ) ) .  (3.1 1 a )  

Substitution of (3.11 a)  into the constraint d U ( z  = x2 - )/ax = 0 for smooth separation 
(Sychev 1972; Smith 1977b), with U(x) prescribed by (3.7), together with a local 
analysis like (3.8) and (3.9), yields 

- 
xi1) = T-~F,,,,. (3.1 1 b) 

Hence the separation point is just upstream of the maximum constriction point, 
regardless of the particular shape P(x) provided that P is smooth. This property 
compares with separation positions in external free-streamline flows, the latter also 
tending to separate over the forward face of an obstacle (see, for example, Brodetsky 
1923) but well before the position of maximum obstruction. 

Third, the drag CD on the obstacle becomes 

CD w 3~h3F3,,, + O(h4) (3.12) 

when h is small, since here c -+ 1 - I$,,, in (2.1 1 ). 
The general solution for $ol in x .c 0 is, from (3.2) and (3.5), 

(3.13) 
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The general solution may also be written down formally for x > 0-t but it is more 
useful to take a specific case. If we choose the parabolic-shaped constriction (Smith 

24F(x) = hx(2L - x) L-2 for 0 < x < 2L (3.14) 
1977a) 

then separation occurs at x =I xmsx = L, so that fiO = 2-4 for x > L, from (3.4b). Then 
+ol is given by 

$01 = G(x, - nzl L2 rJ1(pnr) J l  (p ) exp (fin$?) (r6,-3- 6~5-2p;~) (3.15) 
m 

1 n  
for0 < x  < Landby  

f o r x >  L.Here2=xz-Land 

(3.17 a)  

(3.17 b )  

+ L-2(2~2+5?~-9) for x > L. (3.17~) I 
t The Fourier tramform of (3.2), with $ol(z, 0) = 0, yields the formal solution 

where the integral is taken along the real axis of the transform ( w )  plane and 

F& 2y*(w) = [='F'(z) e-'wzdz+- exp ( -iwzws) 
2W 

from (3.4b) and the wall conditions (3.5). The results (3.13), (3.15) and (3.16) then follow [e.g. 
from the pole contributions of Jt ( iw)J .  



Separating $ow past a constriction 737 

-0.2 L 
FIGURE 4. The function uol(z, 1)  (solid curve) of (3.17a-c), giving the (negative of the) free- 
streamline shape C,C,  in z < 0 [see (3.40)], and the slip velocity correction in 0 < z < L [see 
(3.3) and (3.4b)l for the moderately severe constriction in (3.14),  when L = 1 or L = 4. In z > L, 
u,,(L, 1) - uol(z, 1)  gives the deviation of the free streamline C ,  C,  from absolute straightness 
[see (3.4b)l. The dashed curve shows the perturbation velocity uol(z, 0) along the centre-line. 

Hence, from (3.9) and (3.11), 

hL * hlnh 
x1 = - c /3nfo,+O(h21nh), x2 = L+=+O(hIn(-Inh)).  (3 .18a ,b )  

24 n = l  

The solutions for uol in (3 .17)  confirm that uol is continuous at x = 0 and x = L, since 

OD 1 *  1 

n = l  n = l  

They also confirm the singular derivative implied by (3 .8 )  at x = 0. The solution 
curves for the perturbation velocities uol(x, 1) on the surface and uol(x, 0) along the 
centre-line are given in figure 4 .  We observe that ?,bol and ?,boz have singular second 
derivatives a t  x = x,,, + , in agreement with the property that when x,,, - x and 
1 - r  are both O(h) the motion is no longer a small perturbation of ( 1 . 1 ) )  (3 .1)  then 
becomes invalid and the pressure gradient retrieves the singular form referred to 
between (2 .9 )  and ( 2 . 1 0 ) .  A similar breakdown of the expansion occurs near the 
reattachment point xl. These breakdowns near separation and reattachment affect 
only the lower-order terms in (3.9)-(3.11).  Also,f2,(x) in (3 .4b )  is positive (see figure 4 ) )  
increasing from zero at x = L and tending to  0.105 (for L = 1 )  as x - f co ,  so that to  
O(h2), c = 1 -2-4h-O*105h2 for L = 1 .  Similarly, c = 1 -2-*h-0.011h2 for L = 4 .  

Solutions of the boundary layer (of thickness O(R-4h-4) when h < 1 )  on the con- 
striction shape (3 .14)  are given by Smith ( 1 9 7 7 ~ )  (the shear stress au/ay a t  the wall 
reaches a maximum value of 0.581h8R4L-4, at x = 0.605L) and indeed the first-order 
flow for h small matches directly with the upper limit of moderately constricted 
motions. Finally, the constant 7rl required in (2.5)-(2.9) above is given by 

(3 .19)  n1 = p1 Tol h2 + O(h3) (h < 1 )  
for any shape F(x). 

25 F L M  90 
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4. Very severe constrictions 
At the other extreme, for a very severe constriction where the minimum radius 

1 - F,,, is small, some analytical details are again forthcoming. We write I - Fm,, = B,  

and suppose that, in the gap near the point of minimum radius [i.e. while r is O(s)] ,  the 
constriction is smooth with its slope dF/dx remaining small. Specifically, suppose 
that dF/dx = O ( d )  (this choice gives finite curvature, although the theory below 
applies for dF/dx = O(&), where q > 0). Then in the gap the appropriate scalings are 
r = eP, x = eJ 2 + xmax and 

(4.1) 

since (2.3a, c) require that $o remains finite for mass conservation. Substituting into 
(2.2) and (2.3), we have L?2$o/L?B2 = P-1,8$o/8B, with $,(a, 0) = - 3  and $o(2,-@o) = 0. 

(4.2) 
Here 

F ( x )  = I --eP0(2) 

say, and Po is O( 1)  for 2 = O( I ) ,  with Po@) > 0 for all 2 values, to avoid closure of 
the gap. (If the gap were fully closed the initial condition (1.2) would be inappropriate, 
of course. Hall & Parker (1976) discuss the sudden closing of a gap.) Hence 

$0 = $,(a, P )  + eg1(2, P )  + . . . , uo = s-2ao(x, r )  + e- la (2,9)+ ... 

9, = gAo(2) P 2  - 9, = Ao(2), (4.3) 

where A,($) = 1/42:(2). Therefore the major effect of the very severe constriction is to 
produce a uniform velocity profile through the gap. Extending the series to lower 

I 
orders, we find G1 = $A,@) P2 -&At@) P4, 

Q2 = +A2@) r2 -&A;@) P4 + &A?(&) P ,  

where 

(4.4a) 

(4.4b) 

Also, from (4.1), 
e-2 ( A:@) + ( A,----- A';$: +- A t p i )  + O ( 4  (4.5) 

64 4 
U ( x )  = - +e-1 Al-- 

4P@) 

gives the slip velocity a t  the constriction surface. Since this cannot yield a deceleration, 
the separation point occurs when dP0/d2 = 0 to leading order, so that x2 = xmax + O(B)  

(4.6) 
and, from (4.4) and ( 4 4 ,  

F2(x) = 1 - B + O(@) 

(since p,,(O) = 1). As in the moderately severe case of $ 3 ,  the point of maximum 
constriction yields separation and beyond there the free streamline C2C, is, to Ieading 
order, straight and axial (figure 5). The upstream separation streamline does not lie 
within the gap zone where r = O(e), however, from (4.5) (which holds for - co < 2 < 0) ;  
so it must be a feature of the grosser-scale upstream motion, as must the match with 
the initial forms (1.2). 

Sufficiently far ahead of the gap the expansion (4.1) becomes invalid in general. If 
p0(2)cc 121z, say (where 1 > I), as B - + - c o ,  then (4.3) and (4.4) suggest breakdown of 
(4.1) when 121 is large and O(e-1/@-2)), i.e. when the slope of the constriction becomes 
finite upstream of the gap. Then r and x both have typical length scales O(e(z-2)(2z-z)). 
Therefore the upstream structure is heavily dependent on the particular geometry 
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0 ( E f )  

FIGURE 5 .  The main flow features through the very severe constriction considered in $4. 

of the very severe constriction (see, for example, $ 5  below), in contrast with the 
downstream features. The drag CD on the constriction is dominated by the low down- 
stream pressure contributionpoO, however, and (2.1 1) yields 

(4.7) CD = 4 3 2 ~ ~  + O( 1). 

Also, the boundary layer on the constriction thins to an O(R-te3) thickness in the 
small gap ahead of separation. 

Another form of very severe constriction occurs if the body slope is O( 1) in the gap. 
Then x-xmax and r both have typical length scales O(e). An expansion of the form 
(4.1) is again appropriate, with 2 replaced by 5 = E - ~ ( X - X ~ ~ ~ ) ,  but now $o satisfies 
D2$, = 0 [instead of (2.2)] and the Kirchhoff conditions of $2 .  Unfortunately, with 
this sharp-edged constriction solution is by no means straightforward, mainly because 
the operator 0 2  acquires a complicated form (see, for example, Milne-Thompson 
1968, chap. XVI) under the conformal mappings which are suitable for the free- 
streamline conditions, although some qualitative flow properties are given by 
Batchelor (1967, chap. VI, $ 6.3). On the other hand, ifwe consider the two-dimensional 
channel flow analogue, then V2 replaced D2 (V2 = a2/aZ2 + P/aGj2, where Gj denotes 
non-dimensional distance from the axis of symmetry). Hence the motion through the 
two-dimensional gap is governed by the classical inviscid theory of jet flow through an 
aperture (Milne-Thompson 1968, chap. XI), for which solutions are available for simple 
geometries. For example, if the two-dimensional constriction is a flat plate perpendi- 
cular to the x axis, and the minimum gap width is 2e, then it is found that c = m/(n  + 2) 
to leading order in E ,  where 2c is the width of the jet flow far beyond the constriction. 

5. Slowly varying severe constrictions 
If the typical axial length scale of the entire constriction is large ( A ,  say), an extension 

of the simplifying feature in (4.1)-(4.7) can be made to produce a global solution for 
the motion even for very severe constriction. Suppose that F depends on X = h-'x 
then, rather than on x, where h 9 1. Then we expand 
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so that (2 .2 )  reduces to the successive equations 

(aZ/ar2- r- la/ar)  $ ( O )  = -rz,  ( 5 . 2 ~ )  

(aZ/arz - Y-1 a/&) $p = - aZ~p-l)/ax2 (n 2 1 ) .  ( 5 .2b )  

The boundary conditions are 

$i0'(X, 0) = - 4, 
$in)(X, 0) = 0 = @hn)(X, 1 - F ( X ) )  

$&o'(X, 1 - F(B)) = 0, ( 5 . 3 a )  

( 5 . 3 b )  

on body surfaces, together with the free-streamline conditions (2.3) and (2 .4)  and 
31'ho)( - 00, r )  = Y , ( r )  and $?)( - m,r) = 0 from ( 2 . 3 d ) .  The solutions for the first two 

( 5 . 4 a )  
terms are 

(5 .4b )  

where A o ( X )  = $ ( f 2 + f - 2 )  andf = 1 - F ( X )  a t  axial stations where the flow is attached. 
But (5 .4a ,  b )  give the slip velocity 

(n 2 1) 

$$o) = - + ( I +  r4) + Qry-2(1 +j4), 

$A1) = &r2A;(X) ( j 2 -  r2), 

u(x) = a ( f - 2 - y )  - g ~ ; ( x ) p ~ - z +  op-41, (5.5) 

which would yield deceleration in x > xmax. Therefore separation is implied when 
x = xz = xmax+O(A-2), again a t  the maximum constriction point (cf. ( 3 . 1 1 ~ )  and Q 4). 
Beyond x = x,,, we require U ( x )  to be uniform, so that from (5.5) 

F2 = F,,, + 0 (Ap2)  (5 .6 )  

and the free streamline C,C, is again straight (to leading order in A-1). Clearly these 
results, summarized in figure 6, can be extended to higher order in A-l and they 
include as a special case the local properties of very severely constricted flows in $ 4 .  
However, to determine the reattachment position x1 and upstream separation constant 
n1 in (2 .9 ) ,  a shorter-scale'study (given below) is required, since, on the long scale 
O(A),  the upstream free streamline Co Cl does not appear. It is confined to the vicinity 
of the onset of constriction ( X  = 0 + ), where a slight discontinuity is present since, 
according to (5.4), the flow is completely unaltered from the incoming form ( 1 . 2 )  
ahead of the constriction ( X  < 0). There, if F N K o X +  O ( X 2 ) ,  where KO ( > 0) is a 
constant, then the series (5.5), for instance, eventually breaks down. The smoothing 
out of the discontinuity a t  X = 0 takes place on the finite length scale of x and r .  On 
this scale the constriction has the shape F = h-lKox + O(A-2) for x > 0, SO the 
moderately severe analysis of 3 3 applies with h = A-lK, ( < 1) and P ( x )  = x for x > 0. 
From (3.13)-( 3.17) we have 

uo1= - c (x < 0) or x 2 - - k +  exp(-pnx) (x > 0) (5.8) 
n = l  Pn" n = l  P i  

and from (3 .9)  (5 .9 )  
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C3 

Cil 
- ---l'k Xmax 

O 0- '+----- 0 (A) -4 
FIGURE 6 .  Flow structure produced by a slowly varying severe constriction. 

fixes the upstream separation position of (2.9). As x - f c o  the merging with (5.4) and 
( 5 . 5 )  is achieved by (5.7) and (5.8). The reattachment point C, is a t  a distance O(h-l)  
from the onset of constriction, whereas the separation point C, is a feature of the 
broader-scale flow (5.1)-(5.6). The drag C, also depends on (5.1)-(5.6) but to leading 
order is given by (2.11) with c replaced by 1 -F,,, [from (5.6)].  Like 3 3 the above 
provides a complete description of the motion, apart from the vicinities of the re- 
attachment and separation points C, and C,. 

6. Suppression of upstream separation 
The main cause of the upstream separation [in ( 1 . 1 )  or (2.9)] in the above severely 

constricted tubes is the fact that  the constrictions have a definite starting point, so 
that far upstream the flow response is of the eigenfunction form (2.5),  for which 
separation is inevitable. Similarly the form (2.5) would dominate (and produce 
separation) if the constriction F(x)  did not have a definite starting point but never- 
theless decayed upstream faster than exp (PI x). On the other hand, if the constriction 
decays slower than exp (P1 x) then the far upstream disturbances are of the forced type, 
for which separation is suppressed, as follows. 

Let us examine, then, an algebraic decay far upstream of the type 

F ( x )  - , ~ I x I - ~  for x - f - c o ,  (6.1) 

where the constant ,u > 0 for constriction, and N > 0. Then the solution of (2.2) as 
x+-m gives 

(6.2a) 

U ( x )  = ,u/x(-N+o(Jx1-N), (6.2b) 

so the slip velocity is accelerating and attached flow is implied upstream. However, a 
nonlinear viscous adjustment is still necessary ahead of the x = O(1) regime because 
ultimately (6.2b) and the oncoming velocity in (1.2) must become comparable near 
the wall. Below we consider first (in §§6.1 and 6.2) this nonlinear adjustment. I ts  
properties then lead us on to consider ( 9  6.3) a further necessary (but linear) adjust- 
ment which occurs on an even longer scale upstream. The complete flow structure is 
shown in figure 7 .  

@o = Y O ( r )  - h,u2r21xI-2N+o( lxl-2N), 

6.1. The  nonlinear viscous adjustment upsteam 

This upstream adjustment takes place on a large axial length scale, unlike that in 
5 2, where the exponential decay demands an O( 1)  scaling. The required balancing of 
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FIQURE 7.  Sketch (not to scale) of the different flow regions studied in 3 6,  where upstream separa- 
tion is suppressed. The dots indicate the edges of the viscous layer 11, whose thickness is O(A,), 
O(R-1) and O(1) for -x = O(Al) ,  x = 0(1) and x = O ( R )  respectively. Shown underneath is the 
variation of the wall pressure gradient through the tube (for 0 < N < )). 

inertial and viscous forces in a wall layer, with the oncoming motion (1.2) disturbed 
nonlinearly, demands an axial length scale O(Al = R1/(1+3N)) and a wall-layer thickness 
O(A2 = R-N/(1+3N)). 

Setting x = Al X ,  where X is finite but negative, we have 

u = A2U&-, = -AEYII, = A; PI1 (6.3) 

in the wall layer 11, where r = 1 - A2 Z,, and Z , ,  is O( 1). The flow in layer I1 is con- 
trolled by the boundary-layer equations (where we introduce for convenience the 
Prandtl transformation Z = Z , ,  -pIXI-N) 

with the boundary conditions 

U,, = Y,, = o a t  Z = 0, (6.4b) 

U,,+Z, YI,+@2, d P I I / d X + O  as X+-co with fixed, ( 6 . 4 ~ )  

Here (6.4b) is the no-slip condition on the disturbed wall and ( 6 . 4 ~ )  represents the 
initial profile (1.2). Finally, (6.4d) joins the wall-layer flow to the core flow I, wherein 
r is O(1) and (provided A7 > 4; see (6.15) below) 

$ = 'Yo(r)-A$ PII(X)r2+o(A%) (6.5) 

from the Navier-Stokes equations and the symmetry condition $ ( X ,  0) = -&. The 
merging into the asymptotic form (6.4d) is algebraic (as with Brown & Stewartson 
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1970; Melnik & Chow 1975; Smith 19776) rather than exponential. Likewise, the 
starting form in 11, for X large and negative, has the algebraic similarity properties 

~ I I  4IXI"V2+ IX14-"So(7), UII Ixl*'V+ Ixl-"C1(7), PII POIXI'-", (6.6)  

where 7 = zlXl-4 is O(1) and S o ( q )  satisfies 

Ft - +s2 9; + (Q - N )  (79; - So + Po) = 0, (6 .7a )  

FO(O) = Sh(0) = 0) 9; (co )  = p. (6 .7b)  

The major features of the solution for Fo(y )  depend on the value of N ,  since (6 .7a ,  b )  
yield, on integration, 

where the integral is to take its finite part and 

P, = - 3 Q r ( ~ + + ) / r ( g )  r (N)  ( 3 ~  - I) .  (6 .8b)  

Hence, if N > Q, Po < 0 with IPII(X)l -+ 0 as X-+ -00, while if N c 4, Po > 0 with 
IPII(X)l -to3 as X-+- co. In  either case the pressure gradient is favourable (the 
trivial case N = Q gives also an increasing, logarithmic, pressure as X decreases), and 
the series (6 .6 ) )  with (6.8a, b) ,  yield the increasing skin friction 

( 6 . 8 ~ )  

in accord with the pressure gradient. But an important distinction does arise between 
the two cases N 5 4, since for 7 3 I 

So if N > Q the pressure term Po dominates the perturbations to the uniform stream 
Po = p7 and the third term in (6 .9 )  implies only a minor contribution O(Z1-3N) to the 
outer condition onY,, in (6 .4d ) .  The core flow in (6 .5 )  is then consistent with (6 .4d ) .  
The work in $ 6.2 will be concerned with the case N > 4; the case 0 < N < Q requires 
extra attention and leads to the further upstream adjustment considered in $ 6 . 3  
beIow . 

6.2.  The solution in 11 

The necessarily numerical solution of ( 6 . 4 ~ 4 ) ~  which fixes the upstream adjustment 
in I and 11, was determined for a number of values of N using 5t centred-difference 
scheme similar to those of Smith ( 1 9 7 7 ~ - c ) .  In  practice, to incorporate the singular 
starting form (6 .6)-(6.9)  into the calculations it proved best to integrate (6 .7 )  numeric- 
ally for F0(7), along with one extra term in the series of (6 .6 ) .  When the calculated 
flow in I1 carries on from (6 .6)  for finite values of X the skin friction 7II(x) and pressure 
PI,(X) continue their respective upward and downward trends (figure 8). Mesh widths 
AX = 0.02 and A z  = 0.1, a starting position X = X - ,  = - 20 and a Newton iterative 
tolerance of 10-7 were sufficient in general for an accuracy of four significant figures 
in PII(X). 
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I I - 1  I I 
0 -3 -2 

xu-31(l+3" 

I I I 1 
-3' -2 -1 0 

FIGURE 8. (a)  Pressure P,,(X) and ( b )  skin friction 711(X) for the upstream response studied 

xp-31( I t3h9 

(6.3)-(6.16), with N = 1,1.4. Asymptotes: ---, from (6.6); a . .  ., from (6.12)-(6.16). 
in 
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As X approaches zero the singularities in ( 6 . 4 d )  assert themselves (since on this scale 
the majority of the constriction acts as a singularity at X = 0 - ). The structure of I1 
near X = 0- is similar to that of Stewartson (1970b) except that here the effective 
displacement (pl XI-N)  is prescribed. An analysis along his lines is relevant. For 
X + 0 - the solution given by the constraint ( 6 . 4 d )  holds for all finite positive values 
of Z, so that 

YI1 N &(Z+P~X~-")~++II(X),  UII N Z+plXJ-" for Z > O. (6.10) 

The condition (6 .4b)  is violated by (6 .10) ,  of course, and a slip layer is required near 
Z = 0, wherein 6 = .!?p*/IXI@+N)is O(1). Here 

YII N JXI*('-N'FII(5)~ub+..., UII jXl-ivF;I(5)p+.-., (6.11) 

implying PII(X) - 6P21XI-2N (6.12) 

for consistency, and F1&) satisfies the Falkner-Skan problem 

Fg++(N-  l ) F I I P ; I + N ( l - F ; ; )  = 0, (6.1 3 a) 

FII(0) = Fi1(O) = 0, F;,(co) = 1 (6.13b, c )  

The outer condition ( 6 . 1 3 ~ )  matches (6.11) (as <-too) with (6.10) (as Z-+O+). The 
solution of (6 .13))  like that of (6 .7 ) ,  depends on the value of N but it exists for all 
positive N .  (See Jones & Watson 1963, p. 250; their a a n d p  take the values sgn ( N -  1) 
and 2 N /  IN - 1 I respectively if N $. 1 and the values zero and 1 if N = 1. In  all cases 
the velocity profile Fi1 increases monotonically from zero to unity as 5 increases.) 
The main property from (6.13) is the form of the skin friction 

711(X) N IXI-*(3N+1)F;I(0)p+ for X+O-.  (6.14) 

Further terms in (6.10)-(6.12) are readily obtained. However, comparisons given in 
figure 8 of (6.10)-(6.14) with the numerical solutions tend to confirm the singular 
behaviour. 

Reconsidering the necessary match with the flow ( 6 . 2 ~ )  b )  when x is O(l) ,  we see 
that (6.10)-(6.14) are consistent. For example, the core of (6 .5 )  merges with ( 6 . 2 ~ ) )  
via (6.12). Again, the viscous part of the wall layer I1 has thickness AzIXI*(l+N) as 
X -+ 0 - , which converts to R-*l~lf(l+~) for x -+ - co, and the classical R-* order is as 
expected for the severe constriction (see, for example, $ 2 )  when x becomes finite. 

Similar long-scale upstream adjustments occur for exponentially decaying con- 
strictions, rather than (6 .1 ) ,  and for decaying dilatations where ,u would be negative 
in (6 .1 ) .  In  the latter, however, the structure is similar to that in Smith ( 1 9 7 7 ~ )  and 
separation occurs for a finite negative value of X. Hence a slow upstream decay in a 
dilatation fails to suppress separation (and the original flow (1.2) tends to continue 
forward in the axial direction, leaving a slow eddying motion to fill the dilatation), in 
contrast with the suppression of separation by slow upstream decay in a constriction. 

6.3.  The linear adjustment at distances O(R) upstream 

The above solution features in I and I1 as X -+ 0 - hold for all N > 0, but we need to 
reconsider, finally, the odd properties of the cases 0 < N < & when X-t-co. For, if 
N < 3,  the term O(7,11-~~) in (6 .9)  dominates the pressure term and forces a 
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contribution O(Z1-3N)  in IFI1 in (6.4d) for all X ( <  0). Since this dominates the 
pressure in (6.4d), the core of (6.5) is incomplete and a supplemented expansion 

$ = Y o ( r )  + R-N@l(X, r )  - A: r2P  X 
(6.15) 

u = Uo(r) + R-Na,(X, r )  - 2A%PI,(X) Id + + o(Ai) o(Az)l 
should replace (6.5). But substitution into the Navier-Stokes equations and the 
axisymmetry condition yield a@,/aX = 0, giving 

g1 = g1(r) ,  a, = al(r) for all x < 0. ( 6 . 1 6 ~ )  

The profile a1(r)  cannot be determined from the present (1-11) structure, but is 
certainly non-zero since we require 

(6.16 b )  
r(N + 4) l?(N + 6) 32N+)  

2nNr(N)  
( l -r)-3N as r + 1 -  -P 

to match with (6.9). However, there is now a mismatch with the upstream conditions 
(1 .2) ;  so how does the arbitrary profile ( 6 . 1 6 ~ )  evolve? The question of the arbitrary 
profile also arises if N = 4, when the O ( T ~ - ~ ~ )  term in (6.9) is replaced by a In 7 term. 
Therefore all the constrictions with 0 < N < Q require further attention as far as their 
properties for X -+ - 03 are concerned. (A less pronounced mismatch occurs if N > Q.) 
We find that in fact the profile (6.16,) is generated from (1.2) through an extra 
upstream adjustment on an even longer axial scale than O(Al), namely O(R). On that 
scale viscous effects fill the entire tube because, for example, the thickness of 11, 
A21xAi11* for X + - w  from (6.6), increases to O(1) when z is O(R) and negative. Let 
us take the example N = 6, for clarity. Then, when x = Rx* with x* = 0(1) but 
negative, the solution has the uniform expansion 

$ = Y?,(r) + R-H$*(x*, r )  + O(R-#), 
u = Uo(r) + R+u*(x*, r )  + O(R-+), (6.17) I p = -2x*+R-& 2) * (x*,  + O(R-4 

implied by both ( 6 . 1 6 ~ )  and the O(R-B) wall disturbance from (6.1). The Navier- 
Stokes equations yield the viscous governing equations 

au* U;(r)ag* dp* a2u* lau* 
r ar ' ax r ax* dx* ar2 r ar 

uo(r)7---= -- +-+--, p *  =P*(X")  ( 6 . 1 8 ~ )  
i a$* u* =-- 

for the disturbances, in x* < 0 and 0 < r < 1.  The boundary conditions are 

$*(x*, 0) = 0, (6.18 b)  

$*(x*, I )  = 0, u*(z*, 1 )  = -p/x*(-B ( 6 . 1 8 ~ )  

from axisymmetry and the no-slip conditions a t  the surface (1.3). The starting con- 
ditions (1.2) imply that 

$*(-co,r)= O=u*( -w , r )=p* ' ( - co )  (6.18d) 

and (6.18u-d) fix the solution for $*, u* and p *  in x* c 0. As x*+O- the only 
consistent behaviour for (6.18 u-c) is the singular form 

(6.19,) I ** @1(r)+ Ix*l*@z(r)+o(lx*l% 

u* N al(r) + Ix*lBa,(r) +- O(l X*l+), 
p*' - -&P0lx* l -~+O( lz* ( -~ ) ,  
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= O  

I I 1 I 

-2 -1 0 I 2 3 

U * ( X * ,  r )  

1 1  I I 1 I I  I I I 0 
-0.2 -0.1 

X*  
x0 o x  I 

X 
0 

0 0 0 0 0 

1 dp* 
ii3P 

-2 
FIGURE 9. (a )  Calculated velocity profiles (solid curves) for (6.18a-d) and tho terminal form 
u l ( y )  (dashed curve) extrapolated from (6.19a, b ) .  ( b )  Solution for the long-scale pressure gradient 
p*’(z*) and centre-line velocity u*(z*,O) in (6.18)-(6.22) ( N  = i). Asymptotes: 0, from (6.20); 
x , from (6.19a). 
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where, from (6.18a-c), the profiles Q1(r)  and g 1 ( r )  are undetermined locally [they 
depend on the whole upstream motion of (6.18a-d)l but 

$, = -Po+, B, = - 2P0. (6.19b) 

A viscous sublayer of thickness O(lx*l*) also develops near the wall, to correct for the 
slip induced by (6.19a, b). I ts  characteristics are essentially those of (6.6). 

Hence as x*-+O- the match with (6.15) and (6.16) (as X+-co) is achieved. To 
verify that the O(R) scaled adjustment can also achieve the necessary joining to the 
original Poiseuille flow upstream we must consider how the condition (6.18 d) is 
effected. We find that, for x* + - CQ, 

00 co 

$* N $ (x*I-n-Bfz(r), a* A, c \%*l-"-*&(r), p*' N - (i-?%)pzlx*\-"-*, 
n=O n=O n=O 

(6.20) 
where, from (6.18~-c), rg;(r) = f t ' ( r )  (n 2 0) and 

(6.21) 

fn*(O) = fn*(l) = 0 (n > 0). 

An integral formula for f: and g t  can be written down. We find in particular that 

(6.22) 

- 6 r 2 - 2 r 6 + 3 r 4 + 1 1 ] - ~ ( 1 - r 2 ) ,  

SO that (6.18d) is satisfied. 
Therefore both extreme conditions (1.2) and (6.15) are met on the O(R) scale. The 

solution of (6.18a-d) describes a buffer zone between (1.2) and the 1-11 structure of 
(6.3)-(6.5) in much the same way that the 1-11 structure provides a buffer between 
(6.3)-(6.5) and the flow a t  finite distances from the majority of the constriction. The 
solutions (determined numerically) for the pressure gradient dp */dx*, centre-line 
velocity u*(x*, 0) and velocity profiles u*(x*, r * )  are drawn in figure 9, along with the 
asymptotesfrom (6.19a) and (6.20)-(6.22). Moregenerally, figure 7 follows the pressure 
variation through the tube when a constriction having the property (6. l), with 
0 < N < Q, is present. The pressure gradient changes drastically through the various 
flow regions. When N = Q, for example, it is equal to - 2R-1+ O(R-P) while x ( < 0) 
is O(R), O(R-8) when x ( < 0) is O(R*), O( 1) for x = O( 1) with x < x2, and O(R-') for 
x = O(1) when x > x2. Finally, it  is O(R-l) again during the final reattachment process 
where x is O(R) and positive. 

7. Further discussion 
The high Reynolds number flow solutions for moderately severe, very severe or 

slowly varying severe constrictions seem to provide insight, over a fairly wide range of 
conditions, into the basic features of the free-streamline problem posed in $2. One 
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marked property of all those cases is the appearance of viscous separation (and 
inviscid breakaway) close to the point of maximum constriction. This property is in 
line with some experimental observations (Fottinger 1939; Lee & Fung 1970, 1971; 
Deshpande et al. 1976; see also the appendix). Like many other aspects of the motions, 
it follows from the remarkably simple relations between the obstacle shape and the 
pressure or slip velocity induced, as in (3.6) and (3.8), (4.5) and (5 .5 ) .  These relations, 
in turn, are a direct consequence of the assumption that the incoming profile is of a 
realistic kind [e.g. (1.3)], with no slip a t  the tube wall. An unrealistic (e.g. uniform) 
profile could well lead to unnecessarily complicated relations and/or to  misleading 
predictions for separation and reattachment, we believe. Again, the occurrence of 
separation near maximum constriction contrasts with the situation in external flows, 
where separation usually occurs well onto the forward face of a body (Brodetsky 
1923; Woods 1955). This delay of separation, like the occurrence of separation far 
upstream [in (2.9)], is due to  the confinement of the flow. 

Apart from the predicted positions (Co, C,, C, in figure 1)  of separation and re- 
attachment, and the width c of the jet downstream, perhaps the most representative 
feature of the flow is the drag C, (see (2.11) and figure 3). I n  all the cases studied in 
$ 3  3-5, C, is given by (2.11) but, since the jet width is equal asymptotically to the 
minimum tube width, c may be replaced by 1 - F,,, to leading order. On the other 
hand, there is the possibility of a non-uniqueness arising if the obstacle is very smooth 
beyond the maximum constriction point, since a conventional boundary layer on the 
obstacle may be able to stay attached there. This would lead to a much reduced drag. 
The same possibility occurs in external flows (see, for example, Roshko 1967), although 
the alternative, attached flow can be discounted if, as in our problems, the obstacle 
terminates suddenly. Separation can also be suppressed ahead of a severe constriction 
( 9  6), but only if the constriction has no definite starting point and decays slowly 
enough upstream. 

Comparisons of the theory with solutions of the Navier-Stokes equations and with 
experiment are presented in the appendix, and they tend to support the high Reynolds 
number structure proposed. 

The relevance of this tube flow study, and of the moderate- and fine-constriction 
theories (Smith 1976a, b,  1977a), to physiology and engineering is clear. It may be 
that, with alternative profiles to (1 .2),  some connexion could also be established with 
the effects of wall interference in wind-tunnel boundary-layer experiments. The work 
by Bates (1978) and Smith ( 1 9 7 6 4  may also be applicable to wind-tunnel interference 
in quasi-unbounded conditions. For all these applications it is noted that the two- 
dimensional symmetric problem (cf. Tillett 1968) is the same in essence as the axi- 
symmetric problem studied above. However, asymmetric two- or three-dimensional 
tube flows with severe constrictions have different characteristics. The considerable 
upstream response in the former case has been examined by Smith ( 1 9 7 7 ~ )  and can 
no doubt be extended to provide the entire free-streamline description through the 
constriction; but the account of asymmetric three-dimensional tube flows, probably 
the most practically important case, has not been advanced beyond the stage of a 
fine constriction yet. A nonlinear upstream response is generated there (Smith 1976c) 
but its ultimate form, to  be determined numerically, is still unknown. On the other 
hand, it may be foreseen that, for a severely constricted asymmetric tube, free- 
streamline theory will again provide the basis for the flow description. Another 
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situation still to be investigated is that of the axisymmetric severe constriction when 
the axial and radial length scales are comparable but small, and the incoming motion 
is virtually a uniform shear locally. 

I am very grateful to the referees for their interest and constructive comments, 
for pointing out errors in the original versions of (2.1 1) and (3.10), and for noting the 
paper of Deshpande et al. (1976). 

Appendix. Comparisons with experiments and with Navier-Stokes 
solutions 

Quantitative comparisons of the present theory with experiments (Young & Tsai 
1973) and with calculations of the Navier-Stokes equations (Deshpande et al. 1976) 
are given in figures lO(a)-(c). With one exception (figure 1Oc) our limit solutions 
for R- t  co are taken from the slowly varying theory of $ 5 ,  since all the constriction 
shapes MO, MI, M 2  and M 3  considered by Deshpande et al. (1976) seem to be of the 
slowly varying severe kind rather than moderately severe. 

Figure lO(a) presents the pressure drop PDR ( =  16Ap, where Ap is the difference 
in pressure p at stations 8 pipe diameters from the maximum constriction) as a 
function of the Reynolds number. Here PDR and Re = +R are the variables of figure 
6 of Deshpande et al.  The trends of both the Navier-Stokes solutions and the experi- 
ments as Re increases are very close to our limiting solutions (for 16Ap0 for Re 9 1) 
for PDR, certainly for the shapes MO, M 2  and M 3 .  For the shape M1 the experiments 
suggest a Reynolds number effect persisting above Re = 1000, possibly because the 
major separation (at x = 2,) does not appear until Re = 195 and M I  is the most 
slowly varying of these constrictions. In  figure 10 ( b )  the centre-line velocities 
(CV'EL = 2u(x, 0)) calculated by Deshpande et al. a t  various Reynolds numbers are 
reproduced from their figure 11. An ultimate approach to our limiting solution (also 
shown in figure l o b )  is certainly not inconsistent with the calculated trends (we note 
the decrease in CVEL a t  maximum constriction, and the flattening out beyond, as 
Re increases), although clearly the Reynolds number effect is still quite pronounced 
at Re = 100. This Re effect is also evident in figure lO(c), which compares the solution 
of Deshpande et al. (at Re = 200) for the axial velocity profile a t  maximum constriction 
(in the model MO) with the leading-order theoretical predictions of $54 and 5. The 
suggested reduction in the velocities there as Re increases is very much in line with the 
velocity reduction implied in figure 10(b) .  

Qualitatively, all the overall flow patterns calculated by Deshpande et al. (e.g. their 
figure 4 b ) ,  observed or calculated by Lee & Fung (1971) (e.g. their figures 2 and 3) 
and measured by Young & Tsai a~lso tend to support the present theoretical view 
(e.g. our figures 1 and 6).  However, the Reynolds number effects mentioned above are 
evident in figures 5(a )  and ( b )  of Deshpande et al., where the dependence on Re of the 
major separation position C, and of the reattachment position downstream are shown. 
Clearly the approach to an asymptotic limit is quite slow there, at least as far as C, 
is concerned, although the predictions of $$ 3-5 [that C, is given by x - xmax + O(R-i%)] 
seem to be in keeping with the variation of C,. Indeed, bearing in mind the expected 
R-A dependence in (2.1) ff., we feel that the discrepancy between the theory and the 
calculated or experimental results is satisfactorily small and is due almost entirely to 
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M2 and M3 limit *---- 
8 
% 

MO limit 

1 1 1  I I &a* 
10 50 100 500 1000 

Re 

I I 1 I I I I 
-1 0 1 2 3 4 5 

X 

0 1 2 3 

2u (xmx. r )  

FIGURE 10. (a )  The pressure drop PDR as a function of Reynolds number Re for the constrictions 
MO, M 1 ,  M 2 ,  M 3  of Deshpande et al. (1976). - , calculations of Deshpande et al.; 0, 0 ,  
experiments of Young & Tsai (1973); ---, present theory for slowly varying severe constrictions 
when Re $ 1. ( b )  Comparisons of the calculated centre-line velocities CVEL of Deshpande et al. 
(solid curves) a t  various Reynolds numbers and the present (slowly varying) theory for 
Re 1 (dashed curve). (c )  Comparison of the axial veIocity profile at  the point of maximum 
constriction given by Deshpande et al. (1976, their figure 100)  a t  Re = 200 (solid curve) and by 
the present theory [- - -, slowly varying ( f 5 )  ; - .-, very severe ( f 4)]. The original Poiseuille flow 
is marked by the dots. 
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the persisting Reynolds number effects. These effects seem fairly substantial in all 
of figures 5-8 and 11 of Deshpande et al., and they probably explain also the non- 
appearance of any upstream separation (at x = xsesep) in those constricted flows. Since 
the prediction of xseP in (2.9) exhibits such a slow growth of - xsep with the Reynolds 
number, we might expect the upstream separation to appear only a t  Reynolds numbers 
much higher than those of the calculations and experiments above. Alternatively, the 
upstream separation might appear a t  the lower Reynolds numbers if the constrictions 
were more severe or abrupt (as in the asymmetric channel flows of Greenspan 1969; 
Friedman 1972; Smith 1977c, figure 9) than MO-M4. 

Finally, a referee, noting figure lO(a) of Deshpande et at . ,  raised the question of 
concavity in the axial velocity profile through the constriction. Such concavity (i.e. 
with u,(x, r )  having a local minimum a t  the centre-line r = 0) is indeed possible in the 
general severe case of $ 2, since the very severe case of $ 4 always yields concavity a t  
the maximum constriction. For, in general, near x = x,,, (4 = 0), 

&4) = 1 + K , P +  o ( P ) ,  

say, from (4.2), where K,, (the local curvature) is positive; hence in (4.3), 

A,(&) N t ( 1 -  2K042), 

while Al(2) - - &c,, in (4.4b). Therefore, at 4 = 0, the axial velocity profile is given by 

u, = t € - 2 + € - 1 [ ~ K n P 2 - ~ K n ] + 0 ( 1 )  (A 1) 

from (4.1), (4.3) and (4.4). Thus the theory of $ 4  reproduces the concavity exhibited 
by the solutions of Deshpande et al. (given in our figure 1Oc). On the other hand, the 
moderately severe and slowly varying severe constrictions (§$ 3 and 5) strictly (i.e. 
for h+O or h-tco) do not allow concavity, because of (3.1) and (5.4a) (although if 
actual values of h or h are inserted in (3.1) or (5.1) concavity may be implied). 
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